Scientists have made a breakthrough in finding a cure to cancer after discovering a new type of stem cell. So, an anti-cancer vaccine could soon be developed if the stem cell successfully trains the immune system to attack the growth of tumours.
              
Humans may soon benefit from an anti-cancer shot, researchers say.

              

Researchers from Stanford University found that by injecting these cells, known as induced pluripotent stem cells (iPS), into different types of tissue, they could prevent cancer developing in patients potentially years after vaccination.

 

The stem cells were found to build an immune response against the disease in mice because they contain ‘remarkable’ similarities to cancer cells.


They are made using cell samples from skin or blood, which are then reprogrammed to copy embryonic stem cells.


To produce the vaccine, the scientists turned to induced pluripotent stem cells(iPSCs), or stem cells that are generated from adult cells.


Over a decade ago, Japanese-based scientists showed for the first time that adult cells can be genetically reprogrammed to behave in the same way as pluripotent stem cells.


These cells can take any shape or function, "specializing" into whatever type of cell the body needs.


Embryonic stem cells are probably the most well-known type of pluripotent stem cell. As Wu and colleagues write, about a century ago, scientists found that immunizing animals with embryonic tissue caused them to reject tumors.

              

Cancer Vaccine Overtime, this led scientists to believe that embryonic stem cells could be used as a sort of vaccine against cancer tumors. The main challenge of anti-cancer vaccines, however, is the limited number of antigens — or foreign agents that elicit an immune response — that the immune system can be exposed to at once.

However, as Wu and his colleagues write, using iPSCs generated from the patient's own genetic material has — in theory — a range of immunogenic advantages. They present immune T cells with a "more accurate and representative panel of[a] patient's tumor immunogens."


For this, the researchers — led by Joseph C. Wu, of the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University in California — set out to test this hypothesis in mice, and they published their results in the journal Cell Stem Cell.

Vaccine "primed" the rodents' immune systems to eradicate tumor cells

Wu and colleagues used the mice's own cells to create the iPSCs, which they later vaccinated the rodents with. The vaccine targeted several tumor antigens at the same time.


As the researchers explain, the main advantage of using whole iPSCs is that the vaccine no longer has to identify the perfect antigen to target in a specific kind of cancer.


"We present the immune system with a larger number of tumor antigens found in iPSCs," explains Wu, "which makes our approach less susceptible to immune evasion by cancer cells."


In fact, the researchers discovered that many of the antigens found on the iPSCs could also be found in cancer cells.


So, when the rodents received the iPSCs shot, their immune system reacted to the iPSCs antigens. But, because the antigens in the iPSCs were so similar to the ones in the cancer cells, the rodents also became immune to cancer.


The vaccine almost "primed" the rodents' immune systems "to eradicate tumor cells," Wu explains.


Of the 75 treated mice, 70 percent completely rejected breast cancer cells, and 30 percent had smaller tumors within 4 weeks of getting the vaccine. And, the same thing happened in lung and skin cancer models.


"What surprised us most was the effectiveness of the iPSC vaccine in reactivating the immune system to target cancer [...] this approach may have clinical potential to prevent tumor recurrence or target distant metastases." Joseph C. Wu

              

Scientists are hoping the successful animal tests will be replicated on humans.

The future of cancer treatment

In the future, a person who has been diagnosed with cancer might be able to use their own blood or skin cells to form iPSCs, which could prevent tumor recurrence. Likewise, healthy individuals may soon be able to use their own cells to prevent cancer altogether.


“I’m very excited about the future possibilities.” Dr Nigel Kooreman, lead author of the study, said: “These cells, as a component of our proposed vaccine, have strong immunogenic properties that provoke a system wide, cancer-specific immune response. We believe this approach has exciting clinical potential.”

YOUR REACTION?


You may also like

Facebook Conversations



Disqus Conversations